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ABSTRACT

This report covers a study of the factors affecting the polarization and signal

transfer of the Apollo Telecommunications link. The effect of the various factors

upon the performance of the Apollo system are considered. This is accomplished

by first making a comprehensive literature search to determine what information

is currently available which is applicable to the Apollo link. From this basis

additional analysis and some experimental work is carried out on those problems

not covered in the literature.

It was found that the principal factors limitingperformance of the telecommunica-

tions link are: 1) Off axis ellipticity of the spacecraft antennas resulting inpower

transfer loss; 2) Multipath propagation at low angles resulting in boresight track-

ing errors and increased noise whichlimits the region of track and communication

near the horizon; 3) Plasma sheath formation during reentry.

Details analysis of the first two factors is made, and some consideration given to

means of reducing these effects for improved system performance.
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Section One

i. _TRODUCTION

1.1 SCOPE AND PURPOSE

This report documents a study performed during the period of 21 September 1965

thru 21 April 1966 on the__fa_ctors.._(M_ch g0vern an d_a_f_ct_the_91arizati0n_ C!__r-

acteristies of R.F. telecommunicatit)n sig0als bi_twe_n earth and the Apollo space

vehicles. The study consisted of a literature survey and evaluation of existing

data, analysis and experimental tests on those factors not well documented in the

literature, and evaluation of the polarization and signal transfer effects on the

telecommunications system.

The purpose of this study was to provide a comprehensive understanding of the

factors which affect the Apollo Telecommunications link, and investigate the use

of polarization control to enhance the system operation, particularly during low

angle tracking.

1.2 SUMMARY OF WORK PERFORMED

The work accomplished during this period consists of three items. First, a

critical evaluation was made of the existing literature, resulting in a fairly com-

prehensive bibliography of material which is included for further study by those

interested.

Second, a detailed analysis was made of the various factors affecting signal

transfer, external to the hardware of the Apollo communications system. This

analysis consists of a consideration of the factors of wave polarization character-

istics, power transfer between arbitrarily polarized antennas, ionospheric

polarization effects, multipath propagation, and plasma effects.

The third portion of the study consists of an evaluation of the magnitude of the

various effects in relation to the _y and_uLagn the performance of

the system. Specifically the errors encountered in angle, range, and range rate



HUCHES-FULLERTO.A; Hughes Aircraft Company

traeMng are considered. Techniques of reducing the system losses due to

polarization mismatch effects and multipath are considered.

2
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Section Two

2. LITERATURE SEARCH

As background material for this study, an extensive literature search was per-

formed to determine what information is presently available which is applicable

to the problems encountered in the Apollo network from a signal performance

viewpoint. This search was generally categorized into four main areas:

1) Spacecraft, 2) Ground System, 3) Medium, 4) Communications System.

Although overlapping of these areas was inevitable, the literature has been

separated into these general headings in the resulting bibliography. A brief

discussion of each area of search follows below, indicating those areas which

required further analysis. A comprehensive bibliography is included in

Section 7 of this report.

2.1 SPACECRAFT

The motion of the spacecraft and of the spacecraft antennas is well documented

in the literature (references 6 and 7 in the bibliography). The effect of any space-

craft antenna movement on data transfer due to signal polarization change is not

documented in the literature and required further investigation.

There is substantial information in the literature concerning the radiation

characteristics of antennas covered by plasma sheaths. However, most is of

a general and academic natttre and cannot be easily applied to the Apollo re-entry

problem. Reference 9 of the literature survey defines the communication black-

out problem with respect to the Apollo mission in general terms. The effects of

this plasma shield on communications is well known; however, additional work is

necessary to determine ways to reduce or eliminate the blackout problem. This

was not an item of this study.
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2.2 GROUND SYSTEM

Characteristics of the Apollo ground system antennas except for the two 12-foot

re-entry antennas are well documented in this section of the literature survey

(see references 1, 2, 3, and 4}. Characteristics of the 30-foot shipboard

antennas are available from measurements made at Hughes. This information

is sufficient to determine the effect of the antenna characteristics on information

transfer.

References 19, 20, and 22 in the Medium section of the literature survey discuss

the complex scattering problem (multipath) when propagating at zero and below

zero angles over various terrain and sea water. However, it appears there is

very little information available on the effect of mu.ltipath, prevalent during low

angle tracking, on the radiation characteristics of antennas; specifically, those

employed by the MSFN for the Apollo program. Further detailed analysis and

experimental measurements of this item are considered in Section 3.

Further study of the multipath problem would seem to be warranted, including

actual field probe measurements over various types of terrain, and performance

study and correlation of data from existing sites. Measurements which could be

made with an operational system would provide valuable data for analyzing the

problem and establishing design criteria for reducing the multipath problem.

2.3 MEDIUM

The effects of wave propagation through the magneto-ionic medium of the iono-

sphere, specifically with respect to Faraday rotation, are well documented in

the literature. The references found to be most useful in this phase of the study

are references 1, i2, 14, 18, 24, 25, and 26 in the bibliography. To our

knowledge, however, there is no information available concerning the effects

of Faraday rotation on doppler frequency measurements for an orbiting space-

craft. Further analysis of this factor was made and specific results are included

in this report.

Reference 8 in the literature section under the heading Communications System

provides a thorough explanation of power loss in a communication link due to

polarization rotation. This topic has also been considered in some detail.

Results of a computer program to provide reference data are included in this

report.

4



2.4 COMMUNICATIONSSYSTEM

References10, 13, 16, 17, 18and19 in this sectionof thebibliographyprovideda
thoroughenoughsystemdescriptionto fulfill theobjectivesof this study.

Toprovidea betterunderstandingof theApollotrackingandcommunications
system,a reviewwasmadeof phase-lockedloops, a critical item in theopera-
tion of the system. Details of this investigation are included in Appendix IV.

Evaluation of the magnitude of the effect of each factor affecting polarization

characteristics upon the system performance has not been previously documented.

Section 4 of this report details the system performance evaluation.
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Section Three

3. PARAMETER ANALYSIS

This section of the report contains a summary of the major items affecting wave

polarization, signal transfer, and boresight characteristics in the Apollo

communications link external to the system equipment. Detailed analysis is made

of wave polarization, power transfer, ionospheric effects, and multipath, and

data provided in the form of charts and graphs for application to system calcula-

tions. Determination is made of the magnitude of the various effects in the

Apollo link.

3.1 WAVE POLARIZATION

In general, the energy transmitted or received by an antenna is elliptically

polarized, linear and circular polarization being special cases.

One way of analyzing the elliptically polarized wave is to consider the wave to

be composed of two linear components oriented in the vertical and horizontal

planes. This may be expressed as:

E x = E 1 sin ot Horizontal pol. component

E = E 2 sin (_t + 6 ) Vertical pol. componentY

By eliminating the independent variable aJt, it is possible to write the above
1

equations as :

2 2
aE -bE E +cE =1

x x y y
(3-1)

where

2 sin26
a = 1/E I
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b = 2 cos 8 /E1E 2 sin28

c=l/E22 sin 26

Equation (3-1) may be recognized as the general equation for an ellipse, however,

the axes of the ellipse do not necessarily coincide with the x and y axes, see

Figure 1.

62145-I

Y

Figure 1. Polarization Ellipse

To determine the voltage axial ratio of the polarization ellipse, it is necessary

to know the length of the major and minor axes, OA and OB.

This may be accomplished by rotating the axes such that the new axes coincide

with the major and minor axes of the ellipse. The equation of the ellipse in

the new coordinate systems (Xl, yl) is of the form:

(3-2)

A (or its reciprocal if B > A).in which case the axial ratio"R" is merely R =-_



Considering equation (3-1) which was of the form ax 2 - bx y + cy = 1 as being

represented by Figure 1, it is possible to write the equation of the new axes as

q
xI = x cos T + y sin _"

Yl = y cos r - x sin r

Substituting these expressions for x 1 and Yl into Equation (3-2} and rearranging

terms yields:

2 sin2r X 2 (cos r sin r cos _- sin _" (sin 2 _- cos 2 7
.COS_____T+ B2 ) -2 B2 A2 ) XY+ -_ +-7)Y2( A 2

=i

Comparing coefficients with Equation (3-1) re-written as aX 2 - bXY + cY = 1, it

may be seen that

a = cos2r/A 2 + sin2_/B 2

b=2 cost sin_" (I/B2- I/A 2) =sin2r(I/B 2- I/A 2) (3-3)

C = Sin2T /A 2 + cos2r /B 2

solving Equation (3-3) for A,and B yields:

A2= 2
a + c - b/sin2r

B2= 2
a + c + b/sin2 _"

Inserting the values for a, b, and c from Equation (3-1) gives:

A 2 =
2 sin26

I/El 2 + 1/E22- 2 cos6 /EIE 2 sin2r

(3-4)

B2 =
2 sin 2

1/El2 +1/E22 +2 cos_ /E1E 2 sin2_"
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from which the axial ratio can now be found:

R = B/A

Also, Equation {3-3} may be solved for the ellipse tilt angle " _- "

2r = tan -1 b
c-a

or

-i 2 EIE 2 cos6
2v = tan (3-5)

E12- E22

Solving for the axial ratio from Equation (3-4) and rearranging terms:

R2 = 1 + 4 cos6 /P sin2T
S - 2 COS8 /P sin2v (3-6)

where

p = E1E 2

S = 1/El2 + 1/E22

6 = relative phase between the vertical and horizontal linear

polarization components

r = ellipse rotation angle [given by Equation (3-5) ]

A further useful relationship to consider when discussing elliptical polarization

is the cross polarization* component. This may easily be found by using the

expression for axial ratio in terms of two orthogonal circularly polarized waves;

as given by1:

E R + E L
R=

E R - E L

where

E R = magnitude of a right circularly polarized wave

* The term "cross polarization" is used here as synonymous to the circularly

polarized component of the opposite sense of rotation.

i0



E L = magnitude of a left circularly polarized wave

This may be rearranged to give the ratio of right to left circular polarization

components in terms of the axial ratio:

ER R+I

E L R- 1
(3-7)

Equation (3-7) may be used to determine the cross polarization component of

a wave.

The results given above in Equations (3-6) and (3-7) may be plotted to give

useful reference data. Equation (3-7) results in a single plot as shown in

Figure 2. Here the cross polarization is plotted as a function of ellipticity

defined as:

Ellipticity e = 20 log R (dB)

Equation (3-6) however will result in any number of plots as a function of the

amplitude and phase of the two linear components. For example, where

E 1 = E 2 = 1, Equation (3-6) reduces to

R 2 =1+ 2 cos6 /sin2T
2 - 2 cos 6/sin2T

From equation (3-5), _- = 45 °,

therefore

R 2 = 1 + 2 cos 8
1 - cos6

Figure 3 is a plot of ellipticity in dB versus the phase angle "6" between two

linear polarization cnmpo_n_nents Curves are shown for amp]ih._de r__tios nf the

two linear components of 0 dB (i. e. equal magnitudes), 3 dB, and 6 dB.

For example, if the circularly polarized wave is considered to be made up of a

vertical component twice the magnitude of a horizontal component, and the phase

between the two components is 120 degrees, the resultant ellipticity from Figure 3

is about 5.9 dB.

The relationship between the linear components, the polarization ellipse, and

the measured response of an elliptically polarized wave may be seen by consider-

ing the polarization pattern.

11
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Figure 4(A) shows the familiar donut shaped polarization pattern of a linearly

polarized mathematical dipole. Figure 4(B) shows the result of adding two linearly

polarized waves whose polarization patterns are oriented 90 ° apart in space and

whose time phase is also 90 °. The vectors A and B show the response of a linear

probe to each of the dipole fields, and the vector addition of B + A' to yield C

indicates the result of the 90 ° phase between the components. The response at
1

the angle 0 would then be C' as indicated. The relationship between the elliptical

polarization pattern, (which represents the response of a linearly polarized probe

to an elliptieally polarized wave) and the polarization ellipse is shown in Figure 4(C).

If either the polarization pattern or the polarization ellipse is known, the other

can be constructed graphically as shown.

3.2 POWER LOSS BETWEEN ARBITRARILY POLARIZED ANTENNAS

In the previous section, the polarization characteristics of a wave radiated from

an antenna were considered. The equations for determining the complete polariza-

tion characteristics were given. As the wave was broken into two linear compon-

ents (i. e. : vertical and horizontal polarization), the equations may be used to

evaluate the effects of propagation, multipath, etc. on wave polarization charac-

teristics. However, an additional item, the power transfer between two antennas

as a function of polarization, is also required to evaluate the overall performance.

This factor has been considered in several sources, one of the most complete in

a recent JPL Report.2 In that report, a general expression is derived for the

power loss due to imperfect polarization match between two antennas of arbitrary

polarization. This expression is given by:

2
(R12 + 1) (R 2 + 1)

Pl = 10 log
(RIR 2 ± i)2 cos 2 0 + (R1 ± R2)2 sin20 (3-8)

where

P1 = polarization loss between the two antennas (dB)

R 1 = voltage axial ratio of one antenna

R2 = voltage axial ratio of second antenna

0 = angle between the major axes of the polarization ellipses of the
two antennas

The plus sign is used when both antennas have the same screw sense; the

negative sign is for the cross polarized case.

14
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(A) LINEAR POLARIZATION

i

(B) ELLIPTICAL POLARIZATION

(C) RELATIONSHIP TO POLARIZATION ELLIPSE

_ _OL_i::TION

POLARIZATION

ELLIPSE

Figure 4. Polarization Patterns

Additional equations are also listed for special cases of interest. For example,

when both antennas are linearly polarized, Equation (3-8) reduces to:

Pl = 20 log sec O

and for the case of one antenna radiating perfect circular polarization,

2 (R 2 + 1)
Pl = 10 log

(R 4- 1) 2

where the definitions are consistent with Equation (3-8).

To generate a set of reference curves, a program was written for the IBM 7094

computer based on the above equations. The program output is a graph of power

loss "Pl" (in dB), versus the ellipticity "E" (in dB) of one antenna, for a given

15
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ellipticity value of incident field. A series of curves are shown for each case

with the angle between the major axis of the polarization ellipse, "0" (in degrees),

as a parameter. The angle is shown at the end of each curve. A set of graphs for

incident polarizations from 0 dB to 6 dB etltpticity and linear polarization (i. e., in-

finity dB) are included in Appendix I.

These curves may be used to determine power loss between the spacecraft and

the ground stations. For example, if the incoming wave from the spacecraft has

an ellipticity of 1.0 dB, and the major axis of the polarization ellipse is ortho-

gonal to that of the ground antenna, (i. e., 0 = 90°), the power loss as a function

of the elliptieity of the ground antenna is given by the top curve of Graph I-3. For

an ellipticity of i dB on the ground antenna, the power transfer loss would be

about 0.06 db.

3.3 IONOSPHERIC POLARIZATION EFFECTS

3.3.1 Faraday Rotation

When a magnetostatic field is applied to a medium composed of ionized gas

(i. e., the ionosphere}, the medium becomes anisotropic for electromagnetic

waves 3. That is, the dielectric constant of the medium becomes a tensor. To

explain this condition, consider a plane wave propagating in an ionized medium

in the n direction as shown in Figure 5. The electric vector has the form E = E o

ej (wt-K • r)where K in the propagation constant and r =a x X+ay y+azZ.

The magnetic field (Bo) is in the z direction.

The electrons in the medium are acted upon by the electromagnetic field and their

motion can be described by the following equation:

dv E + v x H (3-9}
m-d- _- = e e//o o

where

B o = /.to Ho

_o = magnetic permeability

e = electron charge

m = electron mass

= velocity vector

16
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Bo

/ ,II
I .-

Figure 5. Plane Wave in Ionosphere

Solving equation (3-9) for v and utilizing eJ o)t time dependence for E:

2 2
E 0) E 0)

Nev=-j0) o p _, o p Ex0)
2 ' _ _ 22 g

(_g • _ g- 0)) (_g • g 0) )

E
0

j co (Mg Dg - 0)2)
(E 0)g) _g

where:

/_,^2

0)p = _ m"_Eo - plasma frequency

N = electron density

e
_g =_ _o _ = gyromagnetic frequency

e _- dielectric constant
O

Ne_ is the convection current to which the displacement current {j0)eoE ) must be

added to obtain the total current, J:

J = NeV+ j oJe
O

17
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It can then be seen that J is generally not parallel to E-. If ]- is expressed in the

form j oJ(e)E, it is clear that (e) must be a tensor• The tensor (e) can be

written in the form:

where:

(_)
exx -Jexy 0 )
• eyy 0

= JEyx

0 0 ezz

exx o 2 2 yy
w -Wg /

CxY=Je° \w(w 2-2 2) =-eyx
g

Wp2

ezz = E° (1 (O2 )

Recalling that the following Maxwell equations must be satisfied for the medium:

Substitution of the electric field vector expression into these equations, one

obtains:
2

• v (e) • E 0
E- n(n E°) =-'-_c eo

where

The components of this vector equation yield three homogeneous simultaneous

equations from which the propagation constant (k) can be obtained.

A linearly polarized plane wave can be conveniently represented by two

circularly polarized waves of opposite senses of rotation. For the condition when

18



thedirectionof propagationof the plane wave is parallel to the magnetic field,

0 = _r/2 and _ = 0, there are two solutions for K:

2 ] 1/2

, asp

K° = asVFho% 1 - as(as_asg}

2 1/2

" [K = as4 o % i as(as+as

The physical interpretation is that one circularly polarized wave has a propaga-
! ,,

tion constant K° while the other has a propagation constant K ° Because of

the different propagation constants, a superposition of the two waves yields a

linearly polarized wave whose plane of polarization is continually rotating. The

phase difference between the two circularly polarized waves per unit length is

then (Ko'- Ko" ). The Faraday rotation is equal to one half the total phase

difference. The same procedure can be carried out for perpendicular propaga-

tion (0 = _r/2, d = _r/2). The result is that the Faradayrotation for this condition

is less than 10 -3 that for longitudinal propagation for frequencies above 1 kmc.

This concept of Faraday rotation can be extended to the case of elliptical polariza-

tion by considering the wave to be composed of two linear components orthogonal

to each other in time and space. The effect of Faraday rotation would then be to

change the "tilt" angle of the ellipse.

The determination of the amount of Faraday rotation, given a path length in the

magneto-ionic medium, is complicated by the fact that asp (plasma frequency)

and asg (gyromagnetic frequency) are not constant. The plasma frequency depends

upon the electron density profile (N) which is quite variable and uncertain.

However, the Chapman distribution gives a fairly good approximation to the

electron density profile tor the F2 layer of the ionosphere and above".

This is given as:

N = N exp
max [ - h - hmax)lt

1 h hmax - exp (-
-_ i H H

where:

N = maximum electron densitymax

H = scale height which fixes the scale of the electron
density profile (100 KM)

hma x = height of maximum electron density (300 KM)
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A typical electron density profile is plotted in Figure 6.
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Figure 6. Electron Density vs Height

The gyromagnetic frequency depends upon the magnetic field intensity at some

height (h) in the ionosphere. The earth's magnetic field can be approximated by

a magnetic dipole 6, as shown in Figure 7. The magnetic field is as follows7:

H=JHr2 +Hg2 = M J _ sin 22_ r3 1 3/4 9'

where:

^j R 3H = H 1-3/4 cos 2 g (_-_"_)

M = magnetic dipole moment

A

H = magnetic field intensity at the magnetic pole at sea level

(0.7 OERSTEDS)

g = magnetic latitude
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Figure 7. Earth's Magnetic Field

Considering the above discussion, the one way Faraday rotation can be given as:

where:

fg fp2 / H= f2 -Z- cos _b N dr (RADIANS)c H

_s = angle between earth's magnetic field and direction of
propagation.

Radar range (r) can be written in terms of height (h) and antenna elevation angle

(_) by: (See Figure 8)

(R + h) 2 R 2 r 2= + -2 Rr cos (90 ° + _)

62145-8
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Figure 8. Faraday Rotation Geometry
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and the angle +may be expressed as:

O=tan-I [ 2tanO I -cos -1

The computed results of one way Faraday rotation (Omega) versus spacecraft

height for antenna elevation angles of 0, 30, 60, and 90 degrees are included in

Appendix II. The graphs for antennas at 5 degrees latitude apply to the re-entry

ship (2 deg. S), the injection ship (6 deg. S), and Ascension Island (7.5 deg. S).

15 degrees latitude applies to the injection ship (18 deg. S), Antigua (17 deg. S).

and Guam (13 deg. N). 25 degrees latitude applies to Carnarvon (25 deg. S),

Hawaii (20 deg. N), Cape Kennedy (28.5 deg. N), Guaymas (28 deg. N), Canary

Islands (28 deg. N), and the re-entry ship (30 deg. N). 35 degrees latitude

applies to Bermuda (32 deg. N), Texas (30 deg. N), Goldstone (35 deg. N),

Canberra (35 deg. S), Madrid (40.5 deg. N), and the Insertion ship (38 deg. N).

Maximum Faraday rotation occurs for a radar beam in the northern hemisphere

looking south or a radar beam in the southern hemisphere looking north. The

graphs in Appendix II depict the case of maximum Faraday rotation. For each

of the four antenna locations considered, there are two graphs, one for the

Apollo up-link frequency of 2106 MHz, the other for the Apollo down-link frequency

of 2288 MHz. The two way Faraday rotation is the summation of the Faraday ro-

tation of the two links.

It can be seen from the graphs that Faraday rotation is greatest for zero degrees

antenna elevation angle and 35 degrees magnetic latitude. Also, there appears

to be negligible Faraday rotation for heights above approximately 800 Km.

As was discussed earlier, a radar beam whose direction of propagation is

perpendicular to the earth's magnetic field will experience negligible Faraday

rotation at the frequencies under consideration. As a result, Faraday rotation

will change with antenna azimuth bearing when tracking a spacecraft which is

traveling through the ionosphere. The magnitude of change is dependent upon

the height and direction of the spacecraft and location of the radar site. The time

interval in which the change takes place is dependent upon the height and velocity

of the spacecraft. This polarization rotation varies approximately linearly with

time for a spacecraft in a relatively circular orbit traveling from west to east
ZXfl

or vice-versa 6. The resulting _ term will either add to or subtract from the

doppler frequency, producing an error in the velocity measurement of the

spacecraft. To determine the magnitude of this error, the following worst case

condition is examined.
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Consideranantennasite (A)locatedat 35deg.north latitudetrackinga space-

craft (B) 200 Km high traveling at 17,500 mph from north-west to south-east as

shown in Figure 9.

62145-9
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Figure 9. Earth-Orbit Geometry

The antenna elevation angle is zero degrees. From geometric considerations,

the range (r) is 1609 Km and the path length (Ax) is 2276 Km. The time required

to traverse the path (A t) is 293 sec. From Appendix II, the two way Faraday
Al!

rotation is 7 degrees or 7/360 cycles resulting in a_--_ of 6.65 x 10 -5 cps.

Spacecraft radial velocity is related to doppler frequency by the equation:

F D = F R x 2 Vc

where:

F D = doppler frequency

F R = received carrier frequency

v = spacecraft radial velocity
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Using this equation, the radial velocity corresponding to a doppler frequency of
,xO

is 4.35 x 10 .4 era/see. This represents the worst ease velocity error due

to Faraday rotation during earth parking orbit. Since the rms error in velocity

at the end of the first parking orbit is • 4era/see 8, it is seen that Faraday rotation

error is 1.09 x 10 -4 of the tracking system RMS error limits and can therefore

be considered negligible.

For the ease of trans-lunar injection, the spacecraft undergoes a height change

from 197 km to 315 km in 315 seconds and a velocity change from 25,555 ft/see

to 35,631 ft/sec. Referring to the curves on Faraday rotation, the spacecraft's

increase in height corresponds to less than 20 degrees rotation in 315 seconds;

again, a negligible error contribution to doppler tracking accuracy.

3.3.2 Effect on Polarization Ellipticity

It was discussed previously that a plane wave traversing the ionosphere was

found to exhibit a maximum rotation of the plane of polarization when propagating

parallel, and minimum when traveling perpendicular to the direction of the

earth's magnetic field. However, another effect, which takes place when the

direction of propagation is perpendicular to the earth's magnetic field, is a change
3

in ellipticity of the wave .

Since a circularly polarized wave can be resolved into two linearly polarized

waves in time and space quadrature, any change in ellipticity may be determined

by analyzing the effect of the ionosphere upon each of the linearly polarized

components.

Consider the two components of the circularly polarized wave oriented as shown

in Figure 10 propagating in the _ direction.

The propagation constants K' and K" of the two waves differ due to their polariza-

tion orientation with respect to the direction of the magnetic field (Bo).

The magnitude of the change in ellipticity for a given path length in the magneto-

ionic medium is then dependent upon the difference in propagation constants of
3

the two waves as given by Papas :

[ _p2 1/2
K'-K"= _ 1(1- ) -(1c

This equation evaluated at the Apollo frequencies for low elevation angles (i. e., a

path length through the ionosphere of about 3700 K M) yields a maximum phase

difference of 0. 068 degrees. This represents a negligible effect on the wave

elliptieity.
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Figure 10. Components of Circularly
Polarized Wave

3.4 MULTIPATtI

One of the major problems encountered in tracking of spacecraft is that of

multipath effects near horizon. For the Apollo mission, acquisition of the

spacecraft near horizon is limited by multipath, and the acquisition point is

expected to be between 2° and 5 ° above horizon. To investigate this problem,

it is required to know the characteristics of the antenna pattern near horizon

for various kinds of terrain. This is a difficult problem as mathematical

expressions for reflection coefficients of a surface are limited to uniform ground

planes of various conductivity and dielectric constant. Such an idealized ground

plane seldom exists, except perhaps on a level desert region or over a smooth

sea. Reflections from mountains, rough terrain, etc., are difficult to evaluate,

and even in a given case are difficult to measure. However, some knowledge of

the effect of various ty0es of ground on antenna patterns will be helpful in develop-

ing a "feel" for what may be encountered. For this reason, a detailed analysis

was made of this topic.

3.4.1 Pattern Analysis

To analyze the multipath effect, consider an antenna of aperture A, elevated

height h above a ground plane characterized by the dielectric constant _r' and

conductivity o-, see Figure 11. The reflection coefficient P is a function of _ o-,r'

and the grazing angle @. At a point in space, the resultant wave is the combina-

tion of a direct wave E D and a reflected wave E R.
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Figure 11. Multipath Image Geometry

The reflected wave may be considered as coming from an image antenna as

shown. The reflected wave E R may be described in terms of this. image antenna,

modified by the complex reflection coefficient p ( er, tr, ¢ ) = pe Jot"

Also, assuming the antenna radiation pattern E (_b) is symmetrical, the

radiation from the image antenna may be described by the same pattern. However,

the direction of maximum radiation is reversed, accounting for the fact that as

the elevation angle @1 is increased, less energy is directed above the ground

plane from the image (i. e., less energy is reflected from the ground}.

The phase of the reflected energy is a function of both the reflection coefficient

and the path length difference between the direct and reflected rays. The path

length difference may be easily evaluated from the image antenna. The difference

in path length is given by:

AL =2h sin _b

Thus thephase term due topath lengthbecomes

26



Act h

¢ = flAL = 2 flh sin_= _ sin

The field at a point in space may now be given by:

E = E D + E R

pejoy E (gt+ _1 )

4=h

peJae j _ sin_E(#+qtl)

To simplify the problem, it is assumed that the radiation pattern is given by:

E(u) sin (u- z)
= (u - z) (sum pattern)

where

77A
u =-X- sin

z =_ sin_b I

or for the difference pattern

E(u)-
_r _r z)sin (u +_- z) sin (u -_-

7T

77 z) (u--if-z)(u+_-

The expressions for reflection coefficient for vertical and horizontal polarization

may be written as :9

sin@- /(E r -iX) - cos2_b pej¢L h
Ph= =

sinq,- ,/( cr - ix) - cos 2 (3-I0)
V

pV =

(E r- iX) sin_b- (_- jX) - cos 2_ _pe jay

2 0

(er - iX) shi6+ (er - iX) - cos

where

Pv = reflection coefficient for vertical polarization

Ph

E

_r = relative dielectric constant -
£o

= reflection coefficient for horizontal polarization

= grazing angle above horizon

X = cr/w_o =1"8x10 4 /fmc

27



HI '(;HES-FULLER TO.\, Hughes A ircrafl Company

The reflection coefficient for circular polarization may be expressed in terms of Pv

and Ph: Pc = 1/2 (Pv + Ph )

The expression which must be evaluated to determine the effect of the ground on

the error pattern may now be written:

77 77
sin (u +_- z) sin (u -_ - z)

ED=
77 z)77 z) (u-_-(u+-_-

(3-11)

E R = P e J<
ej(p[sin (u +2 + z) _ sin (u- +")I

(u--_+ _)

Eerro r = E D + E R

where

E
error = error pattern in presence of ground

E D = direct ray field

E R = reflected ray field

477h
_b - h sin _b

h = antenna height above ground

= angle above horizon

u = 77A/h sin

A = antenna aperture

z = 77A/h sin t_ 1

= boresight angle above horizon

P e jo_ = complex reflection coefficients (given by Equation (3-10)

A similar expression may be written for the sum pattern.

A program was written for the IBM 7094 computer to calculate the radiation

pattern given by Equation (3-11). The program is general enough to calculate

both sum and error patterns for any antenna height and elevation look angle.

Patterns were calculated for the Apollo 30 ft. antennas over various types of

terrain for circular polarization. Parameters varied were the antenna height

above the ground, elevation "look" angle, and the conductivity and dielectric
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constantof theground. Theprogramdeterminesthereflection coefficient of the

ground for any grazing angle and calculates the resultant far field pattern due to

the direct and reflected rays from the antenna. From these patterns the effect

of the ground on the boresight characteristics may be determined. A typical set

of sum and difference patterns for the Apollo antenna at heights of 30 feet and 45

feet above a good ground are shown in Appendix HI. Free space patterns are

included for comparison. Patterns were run for a good earth (o-=. 012, _r = 15, )

and for sea water (or= 4, _r = 81). Table 1 summarizes the boresight character-

istics of the cases considered.

As may be seen, when the antenna boresight is at 0 ° elevation, the radiation

pattern boresight moves up and the null fills in. This beam tilt or boresight

error is a function of the antenna height and elevation angle. From Table 1.

it can be seen that the ground still has an effect on the boresight characteristics

at a 2 ° elevation angle, however at 5 ° the effect appears to be small. Though

some distortion and null filling of the patterns is still present, there is no

apparent boresight shift. This does not necessarily mean that track could be

maintained in this region. Effects of rough terrain, multipath from mountains,

and increased noise could result in loss of track.

A.

TABLE 1. MULTI'PATH EFFECT

Apollo 30 Foot Antennas

Circular Polarization

Antenna above a good ground (or = . 012, _ = 15)r

Ant. Height
(ft)

15

15

15

30

30

Elevation Angle
(deg)

0

0.5

1.0

Null Position

(deg)

0.4

0.57

1.0

30

30

30

30

30

45

45

0

0.5

1.0

2.0

3.0

4.0

5.0

0.2

0.6

1.0

2.0

3.0

4.0

5.0

0

1.0

0.15

1.0

Null Depth
(db)

25

13

26

31

27

29

22

27

30

25

25

29

29
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TABLE 1. MULTIPATH EFFECT (Continued

Ant. Height
(ft)

45

45

Elevation Angle
(deg)

2.0

5.0

Null Position

(deg)

2.03

5.0

Null Depth
(db)

29

26

B. Antenna above sea water (a = 4, _ = 81)
r

15

15

15

15

30

30

30

30

0

0.5

1.0

2.0

0

0.5

1.0

2.0

0.46

0.57

1.0

2.06

0.21

0.6

1.0

1.98

21

14

27

28

32

23

30

23

After observing the effect of the ground on the radiation patterns, it appeared

desirable to know the phase characteristics of the antenna patterns in the bore-

sight region. The computer program was modified to provide this information and

several cases run to include this information. For low elevation angles the results

are not good. For some cases it appears that even though a null occurs in the

radiation pattern, the antenna might not lock onto the spacecraft, as only 100 °

phase change is experienced in going through the boresight null. To actually

determine the antenna tracking performance at such elevation angles it would be

necessary to simulate the tracking receiver output to the antenna servos for

these conditions. This could be accomplished by using a monopulse antenna with

a monopulse processing circuit to determine the error signal output characteris-

tics. Such an experimental approach could be carried out over various terrain

to simulate actual operating conditions. A program of this type would permit

correlation with the theoretical calculations, and perhaps enable a modified

theory to be established.

3.4.2 Experimental Measurements of Boresight Errors

As the problem of multipath appears to be serious near horizon, and analysis of

the problem can only be based on an ideal situation, an experimental approach

was also taken. Measurements were made on a monopulse feed over a ground

plane, and boresight measurements were also made on a 40 foot diameter track-

ing antenna. These measurements are described below.
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3.4.2.1 FeedOver aGroundPlane

To provideexperimentaldataonboresightshift neartheground,a small mono-
pulsefeedwassetupoveranaluminumgroundplane. This assemblywasmounted
ona patternrangeto facilitate takingdetailedpatterns. As sucha modelcan
easilybecometoo largefor installingona mount,a small X-bandfeed, with a
four inchaperturewasused. Differencepatternswere takenfor variouselevations
abovethe groundplane. Thepatternswerethencomparedwith patternscalculated
bythecomputerprogram. A comparisonof theexperimentalpatternswith com-
putedpatternsindicatethat thepositionof nulls andpeaksof thepatternscouldbe
correlated;however,therelative sidelobelevels donotagree. This is probably
dueto the short groundplaneused(about30wavelengths).Patternsof the 4 1/4
inch monopulseapertureare shownin Figures 12, 13, 14, 15for anaperture
heightabovethegroundplaneof six inchesandvariouselevationangles. Thefree
spacepatternsare alsoshownfor comparison. As maybe seen,the boresight
null movesaboutas afunctionof elevationangle. Also, the effectof a doublenull
at 10degreeselevationis seen. At 0 degreeelevation,the apparentdifference
betweenthefree spaceboresightandthe edgeof thegroundplaneis dueto the fact
that themeasurementsare madeatthegroundplaneedge,andtheheightof the
apertureabovethegroundplaneresults in ananglebetweentheboresightaxisand
the edgeof thegroundplane. For aninfinite, or very large groundplane, the
antennaheightcouldbeneglected,andtheboresightaxiswouldappearat 0 degrees
for boththefree spacepatternandthepatternabovethegroundplane. In this
case,however,the sumpatternswouldalsohaveanull at 0 degrees,andthe
systemwouldhaveto lockonanothernull, possibly thefirst oneabovethe ground
plane.

3.4.2.2 MultipathEffect on Boresight of a 40 Foot Antenna

A 40-foot antenna (AN/MSC-46) was used to determine the gross effect multipath

has on the boresight axis. 'the antenna has a 3 dB beamwidth of. 25 degrees and

receives a left hand circular monopulse signal. The antenna was situated atop a

hill which is 50 to 100 feet higher than the immediate proximity. A boresight

tower was erected at three sites 1,000 to 1,300 feet from the antenna, and the

boresight shift was measured by changing the frequency a total of 7 per cent.

Although no general conclusions can be made because of the uncontrolled environ-

ment, the following may be summarized: (see Table 2).

1. Site I showed no boresight shift.

2. Site II exhibited as much as a beamwidth (. 25 degrees) shift in elevation and

about 1/4 beamwidth in azimuth. For certain frequencies, two indistinguish-

able boresight nulls appeared in elevation spaced. 25 degrees apart.
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3. Site III exhibited no azimuth shift but 1/8 beamwidth in elevation. The eleva-

tion boresight shift occurred primarily over the lower half of the frequency band

and negligible amount at the higher frequency band.

4. The boresight tower at Site II was elevated 20 feet higher with no change in mag-

nitude of the boresight shift.

5. The boresight tower at Site III was raised 10 feet higher with no change in mag-

nitude of the boresight shift.

Site I and Site II appear to be very similar in topographical environment with minor

differences as noted in Table 2. The six foot high wire mesh fence in the proximity

of the antenna may have resulted in cancellation of multipath effect for Site I, and

the edge of the building, which was near the line-of-sight for Site II, may be the

cause of the large error measured. However, the large effects which multipath

may cause near horizon are well illustrated by this data.

TABLE 2. BORESIGHT MEASUREMENTS

Boresight Shift
(Maximum)

Azimuth
Elevation

Site I Site II

.07 degrees

.25

Site HI

0

• 04 degrees

Tower 35 foot tower 20 feet above 35 30 foot scaffold

Height foot building

Elevation Angle 1.5 degrees 2 degrees i degree
from Antenna

Environmental
Description

Parking lot 50-
100 feet below

line of sight.
Six foot wire
mesh fence
near antenna.

Parking lot 50-
100 feet below

light of sight.
Top edge of
of building
slightly below
and to the side
of the line of
sight.

Utility wires
crossed hori-

zontally in line
of sight. No
buildings in the
vicinity.

3.4.3 Signal/Noise Effects

During low angle tracking, an additional problem is encountered which affects

both communications and tracking. At low angles (i. e., less than 10 degrees

elevation) the noise incident on the antenna increases rapidly. This is due to

several effects, two principal ones being atmospheric absorption and sidelobes

looking into the "hot" ground. At the same time, the antenna gain is reduced by

the atmospheric attenuation at low angles. This factor is also appreciable.
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Figure 16is a graph of atmospheric loss as a function of elevation angle at 2500

MHz, based upon a delta function antenna beam. 10 At the horizon (i.e., 90 de-

grees in Figure 16) the attenuation is over 2 db with a corresponding noise tem-

perature of about 110 ° K. This rapidly decreases to about 0.38 db loss and 25 ° K

at an elevation angle of 5 degrees (i. e., 85 degrees from zenith). This effect is

in addition to the noise increase due to antenna sidelobes looking into the ground.

62145-16
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(_ (DEG) ANGLE FROM ZENITH

Figure 16 One Way Attenuation Through Atmosphere Due

to H20 and O 2 at 2500 MHz

Figure 17 illustrates the effect of sidelobe energy incident upon the ground.

For a circular aperture, the antenna radiation pattern null planes may be repre-

sented by a set of coaxial cones; thus taking a cut through the boresight axis one

would see an energy distribution as represented in Figure 18.
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Figure 17. Antenna Sidelobes Radiating Into Ground at Low
Elevation Angles
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t

Figure 18. Radiation Pattern - Circular Aperture (Cut Normal to
Boresight Axis)

The portion of the area included within the circular null planes which strikes the

ground is given by

(Trrm20)/360 2Asegment = - (r m sin 0)/2 (3-12)

If standard graphical integration techniques 11 are used to determine the energy

contained within various regions of the antenna beam, that portion lying between

_o & _ _ _m may be determined. (_o = elevation angle above boresight, _m =

angle off boresight to where radiated energy is low enough to neglect in graphical

integration).

The portion of the energy in this annular region striking the ground is then deter-

mined from the ratio

A rm2 [Tr0/360 -(sin 0)/2]segment
P = A . - (3-13)

ring u(rm2 _ ro2)
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The distances r m and r ° may be determined approximately from the angles _m

and _o' i.e.

r m = R%, r o _--R_b°

where R = range from antenna. Also the segment angle "0" may now be found to

be:

-1 ro -1 _bo
0= 2cos - 2 cos

r m _bm

Substituting into Eq. (2) yields:

p_ 1 [ c°s-l_bo/_bm sin2(c°s-1 _o/_bm) ]
1 - (_bo/_bm)2 180 27r (3-14)

Eq. (3-14) then gives a method of determining the noise temperature increase due

to energy striking the ground.

If Tg = effective noise temperature of the ground, E r = energy in the annular region

_bm <_b< _b° determined by pattern integration, then the noise temperature contri-

bution of the energy striking the ground is

T s = PErTg (3-15)

Using Eq. (3-15) and the graph, Figure 16, it is possible to approximate the noise

temperature of the antenna for any elevation angle near the horizon, for a given

ground temperature.

Analytic determination of the increase in noise temperature of the antenna near

horizon is difficult, however, because of the various types of terrain encountered.

Previous estimates 8 of antenna and system noise temperature have resulted in

values of 65°K for zenith and 185°K for the horizon antenna temperature. This

resu!ts in a sy_em te_m__peruOlre of 233°K at zentih and 353°K at horizon with a

168°K paramp and receiver. If a cooled paramp is used with a temperature of

about 35°K, the system temperatures become 100°K (zenith) and 220°K (horizon).

Based on pattern integration of the 30 Foot Apollo antenna patterns, and measure-

ment made on other antennas 12, the above figures for antenna temperature seem

somewhat high. A better figure for zenith temperature would appear to be approx-

imately 35 - 40°K *. The figure for horizon temperature is probably reasonable.

Predicting an exact horizon temperature is difficult as the distribution of energy

*Based on a circuit loss of 0.5 dB, contributing 30°K, a sky temperature of 2.5°K,
and about 5 - 10°K due to antenna spiUover and reflector absorbtion.
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into the ground, atmosphere, etc. is not explicitly known. Most reasonable es-

timates of power distribution result in an expected temperature of about 150 -

200°K. Applying the graphical integration technique to the theoretical freespaee

patterns used to evaluate multipath results in an expected noise temperature at

horizon of 165°K. This increases rapidly from 25°K at 5 degrees elevation to

165°K at horizon as would be expected from the increased atmospheric attenuation

and sidelobes into the ground at these angles.

3.5 Plasma

A space vehicle re-entering the earth's atmosphere at hypersonic velocities acts

upon the molecular structure of the surrounding air due to tremendous aerodynam-

ic heating. The effect is thermal ionization of the atmosphere surrounding the

vehicle. This action results in liberation of free electrons and ions in the form

of a plasma sheath which serves to interfere with electromagnetic propagation.

Such interference is characterized by absorption, refraction, and reflection of

the electromagnetic energy; at times causing a complete communication blackout.

This possible loss in communications poses a serious problem since it occurs

during a critical phase of the Apollo mission.

A fundamental requirement for propagation through the plasma is that the signal

frequency be above the plasma resonance frequency (f = 8.9 x 103_C-N), where
13

N is the free electron concentration of the plasma

Figure 19 shows the relationship between vehicle velocity, electron density, and

plasma frequency 13 Since the Apollo re-entry velocity is 35,000 ft/see 14, the

operating frequency is far below the plasma frequency and hence; communica-

tions will be disrupted. Typical Apollo re-entry trajectories are shown in Fig-

ure 20 for ranges of 5000, 3,000, and 1,000 nautical miles at a flight path angle

of -6.4 degrees 14 The communications blackout regions are indicated in cross-

hatched areas.

During the periods of re-entry when the velocity of the vehicle is such that the

operating frequency is above but near the plasma frequency, degradation in the

communication link will be encountered due to the plasma impedance and its

close proximity to the spacecraft antenna. The ratio of operating frequency to

plasma frequency must, therefore, remain large to insure good re-entry com-

munication. Since it may become impractical to raise the operating frequency

well above the plasma frequency, an alternative is to reduce the plasma fre-

quency by reducing the free-electron concentration. Various approaches to this

problem are under study 15' 16, such as adding material to the plasma for de-

ionization, aerodynamic shaping of the space vehicle by use of external pods, and

introduction of a static magnetic field.
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4. SYSTEM PERFORMANCE ANALYSIS

4.1 EFFECT OF POLARIZATION PARAMETERS ON TRACKING

To determine the tracking performance of the Apollo system, it is first necessary

to consider the relative performance of the spacecraft antenna system with respect

to the ground stations. The effect of off axis pattern ellipticity may be deter-

mined by considering the spacecraft antenna configuration and orientation during

various portions of the mission.

Also, the performance of the phase locked loop must be known throughout the

mission. Analysis of the phase locked loop performance has been considered in

some detail by several authors 17, 19, 20, and additional calculations were per-

formed in this study. (See Appendix IV). Using this data, the phase error in the

phase lock loop can be related to the angle tracking accuracy and the ranging

accuracy.

4.1.1 Mission Geometry

The relative position and movement of the spacecraft antenna system with respect

to the ground based antennas in the MSFN plays an important part in ascertaining

the overall quality of the Apollo communication and tracking link. In this respect,

the off-axis axial ratio characteristics of the spacecraft antennas come into con-

sideration. The inwstigatioii of ............_u__uuj_L is tuv,u_u_ .... _^_ _1,_...._u_........ _,p_,_,,.'"^ l.,-.a_,_o-_"....

of the mission: (1) lift-off to 2500 nautical miles, (2) 2500 nautical miles to

28,000 nautical miles, (3) 28,000 nautical miles to 115,000 nautical miles, and

(4) 115,000 nautical miles to the lunar distance. It will be assumed throughout

this analysis that the high gain antenna gimbal will sufficiently compensate for

spacecraft yaw and pitch maneuvers.

(1) Liftoff to 2500 Nautical Miles

This phase of the mission includes insertion, earth parking orbit, and trans-lunar

injection. During these periods, S-band communications and tracking are accom-

plished by means of the four omnidirectional antennas located at the base of the
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command module. In addition, the command and communication system (CCS)

located in the SIVB instrument unit (IU) provides a backup for spacecraft ranging

as well as up-data command and down-link telemetry.

The omnidirectional antennas are of the helical type with -3 db gain over an 80

percent spherical coverage. This type of antenna normally has a large off axis

ellipticity. For the purposes of analysis, it is assumed that the worst case

spacecraft axial ratio will approach linear polarization, resulting in a maximum

of 3.54 dB additional loss in the communication link (See Graph 1-10). Since

there are four omni antennas spaced at 90-degree intervals around the perimeter

of the command module, coverage is provided by the spacecraft to all ground

stations within range, regardless of the spacecraft roll angle.

(2) 2500 Nautical Miles to 28,000 Nautical Miles

The high gain antenna located on the spacecraft service module is deployed at

approximately 2500 nautical miles earth altitude. The high gain antenna transmits

and receives RCP with three switchable beamwidths: wide (>45°), medium (>10.4°),

and narrow (>4.4°). The wide mode is used both for transmission and reception

from 2500 to 30,000 nautical miles. Figures 21, 22, and 23 were obtained from

the patterns of the high gain antenna given in reference 21. Axial ratio versus

angle off boresight is depicted for the three modes.

Consider the situation at 2500 nautical miles earth altitude as illustrated in Fig-

ure 24. The spacecraft is estimated to be at approximately 40 degrees W. long.

by 17 degrees N. lat. based upon the lunar transfer trajectory shown in Figure 1,

page 14, of reference 8.

During this phase of the mission, the spacecraft is assumed to be tracked by the

30 foot stations at Bermuda and Ascension and the 85 foot station at Madrid. If

the spacecraft antenna is boresighted on the Bermuda station, then the Madrid

station is approximately 44 degrees off boresight. From Figure 21, the axial

ratio of the received signal at Madrid is 7 db. Since the maximum boresight

axial ratio of the Madrid antenna is 1 db, then from Graph I-3 (Appendix I),

the power loss due to polarization orientation will vary from 0.4 db to 0.8 db. If

the maximum roll rate of the spacecraft is 0.5 deg/sec 22 and the spacecraft an-

tenna does not compensate for spacecraft roll, then the signal received at Madrid

will be amplitude modulated at 0. 00139 cps with a maximum amplitude of 0.4 db.

For the same conditions the Ascension Island tracking station is approximately

66 degrees off boresight corresponding to an axial ratio of at least 10 db. The

resulting power loss varies from 0.8 db to 1.3 db which produces a 0.5 db ampli-

tude modulation of the down link signal due to spacecraft roll.
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Consider now that the spacecraft is boresighted on the Madrid tracking station

instead of Bermuda. Ascension Island then lies approximately 37 degrees off

boresight corresponding to a received signal axial ratio of 7 db, the same as

that received by Bermuda.

These effects decrease as the spacecraft altitude increases because the angle

subtended by the earth becomes smaller.
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(3) 28,000to 115,000NauticalMiles

Themediumbeammodeof thespacecrafthighgainantennais deployedat an
earthdistanceof approximately28,000nauticalmiles. Worst caseconditions
for this spacecraftpositionwouldoccurwhentheprimary tracking stationis
locatedat theearth's horizon (zerodegreeselevationangle)andthesecondary
trackingis locatedat the opposite horizon as shown in Figure 25.

62145-95
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28,000 N. M.

PRIMARY
STATION

SECONDARY

STATION

Figure 25. Worst-Case Tracking at 28,000 Nautical Miles

The off boresight angle (0) of the secondary station is then 12.5 degrees plus

1.05 degrees pointing error. The gain of the antenna (0.2 db) at this angle is
21

sufficient to be above the minimum required gain at 28,000 nautical miles.

Referring to Figure 22, the corresponding axial ratio of the signal received at

the secondary station becomes extremely large, approaching linear polarization.

The polarization loss would then approach 3.54 db maximum and 2.54 db minimum.

(4) 115,000 Nautical Miles to Lunar Distance

The narrow beam mode of the spacecraft high gain antenna is deployed at an

earth distance of approximately 115,000 nautical miles. The angle subtended by

the earth at this distance is 3.34 degrees arid " - pointing error _-- *"^ ,,t_ Lu,,LIIU ........JLU .IL LLJ,_::_

beam mode is 0.90 degrees. The axial ratio of the signal received by the second-

ary earth tracking station under worst case conditions would be 3.24 db (Figure 23).

The polarization loss is then 0.22 db maximum. The magnitude of amplitude

modulation of the carrier due to antenna roll is only 0.12 db.

The angle subtended by the earth at lunar distance is approximately 0.97 degrees,

well within the beamwidth of the narrow beam mode. If it is assumed that the

command module antenna during lunar orbit remains boresighted on the earth

while in line-of-sight of the earth, polarization loss due to axial ratio is then

very small, 0.07 db maximum. However, multipath effects due to scattering

from the surface of the moon can occur. These effects are most prominent during

49



tI _"(;lIES- Fl _LLER "TO._, Hugh es Aircraft Comp any

the period of lunar orbit when the command module is entering and leaving the

occultation period (i. e., spacecraft at moon's horizon as viewed from earth).

The antenna system associated with the LEM consists of a steerable 2 foot para-

bola which is the primary in-flight antenna, and two omniantennas which serve

as a back-up. The steerable antenna and appropriate MSFN stations angle track

each other during periods when they are in line-of-sight. Since the ellipticity of

the steerable antenna pattern is less than 1 db within ± 4 degrees of boresight, the

maximum polarization loss is 0.07 db. While on the surface of the moon, a 10

foot parabola is erected to maintain communications with the MSFN. The ellip-

ticity of this antenna is less than 1 db within ± 1.3 degrees of boresight, corre-

sponding to a maximum polarization loss of again 0.07 db.

4.1.2 Phase Lock Loop Performance as a Function of Spacecraft Motion

The accuracy with which the ground station antenna tracks the spacecraft depends

to some extent upon the total phase error existing in the phase lock loop. This

phase error is most prevalent during the near earth phase of the mission, since

the doppler frequency rate is greatest during this period.

The total phase error consists of static phase error 0}e), phase jitter (Or) and

velocity error (_v). Static phase error is dependent upon doppler frequency

rate and can be defined in the following manner (see appendix IV):

_} -
e c_K

where

= rate of change of doppler frequency

aK = loop gain constant

The value of K depends upon the threshold loop noise bandwidth (2BLo) and

threshold limiter suppression factor (So) as follows:

32 BLo 2

K = KOp T - 9
s O

The values of BLo and s o used during earth orbit are 350 cps and 0. 267 respec-

tively. 8 The value of a (limiter suppression factor) depends upon the limiter

input signal-to-noise ratio. The signal-to-noise ratio for a five watt transmitter

during earth orbit is greater than 30 dB. Nelson 17 shows that for this condi-

tion; c_ equals unity. The value of c_K used in determining static phase error

during earth orbit is then 1.62 x 106 per sec. 2
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Staticphaseerror in thegroundreceiver asa functionof rangefor a 100nautical
mile earthorbit is plottedin Figure26. Thephaseerror is seento bequitesmall
andreachesa maximumof 1.09degreesat minimumrange.

Figure 27depictsthetwo-waydopplerfrequencyversusrangeduringearth orbit.

Theequationusedin plotting thecurveis:

2f
_ cfd c

where

fc = received carrier frequency

= range rate

It is apparent from the figure that doppler frequency rate is greatest during over-

head pass of the spacecraft and rapidly approaches zero with increasing range.

Phase jitter (Or) depends upon the phase lock loop input signal-to-noise ratio in

the following manner:

Or =

where

N = loop input noise power

S = received signal power

The loop input noise power is based upon a horizon noise temperature of 220

degrees Kelvin and a loop input noise bandwidth of 2 KC. The 2 KC bandwidth

is derived from unity a and a BLO of 350 cps. The received signal power (S)

is based upon a five watt spacecraft transmitter with 7 dB circuit losses and

-3 dB antenna gain. Phase jitter versus range is plotted in Figure 28. The solid

curve depicts the case for no atmospheric attenuation, while the dashed curve

includes water vapor and oxygen losses (see Figure 16). The effect of a 3.54 dB

maximum polarization loss, due to off-axis ellipticity, on phase jitter is also

included in Figure 28. An active integrator in the phase lock loop is most probably

used in lieu of a passive filter to insure that loss of lock does not occur during

the Apollo mission. Under these conditions, the velocity error (0v) in the phase

lock loop is essentially zero (see Appendix IV).

Figure 29 depicts the total phase error of the phase lock loop in the ground receiver

during earth orbit. The cross-hatched area indicates the maximum variance in

phase error due to spacecraft roll. (See section 4.1.1).
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To reduce the likelihood of loss of lock in the phase lock loop due to random

perturbation, the condition that _ K > 2 _ must hold, 17 which means that the

phase error should not exceed 28.6 degrees. Figure 29 indicates that the

total phase error is well within this limit; thus, no condition is expected during

normal earth orbit which would cause the loop to unlock.

During the remaining phases of the mission, the spacecraft is at a greater dis-

tance from earth, resulting in a smaller rate of change in doppler frequency

( _); hence, static phase error becomes very small. Since less bandwidth is

required because L is smaller, the phase lock loop threshold bandwidth is

reduced in discrete steps of 200 cps and 50 cps with increasing range. This

combination of reduced bandwidth along with the availability of increased space-

craft transmitter power and switchable antenna gains results in a minimization

of phase jitter (Or) throughout the mission. Thus, no phase errors should exist

in the ground station phase lock loop which will present any problems during the

remainder of the mission.

4.1.3 Effect of Phase Errors on Angle Tracking

To determine the effect on antenna boresight of phase errors in the phase locked

loop which is in the sum channel, it is desirable to consider some general

characteristics of monopulse systems. 18 Considering a typical amplitude

sensing, Sum and Difference monopulse system as shown in Figure 30, it is

convenient to consider the radiation patterns as given by:

7F

sin (u - 7 )
gl (u) - rr

U - --
2

'IT

sin (u + 7)

g2(u) - Tr

u+_

These patterns result in a monopulse beam crossover level of 2/n or - 3.9 dB.

The sum and error signals from the antenna may now be expressed as:

Tf W

sin (u +7) sin (u-7) Trcos u
","lu_ -

rr_ Tr u2 _ 7r2/4u+2 u---
2

sin (u +rr )'I

7) sin (u - 2

(u) = -J Tr - _n-- =- j 2 ucos u
u + _ u 2 u2 _ _r2/4

In an amplitude comparison system such as this, a post comparator (i.e: after the

sum and difference signals are formed ) phase shift such as would be caused by
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the phase locked loop in the sum channel will have no effect on the boresight unless

there is null filling caused by precomparator (in the antenna feed} phase shift.

Therefore assume a precomparator phase shift exists of magnitude "_" degrees.

Then the error pattern can be written

sin (u + 3) sin (u - 7) e j (p
E D = -J v "rr

u+_ u -_

For (p small (less than 10 °)

En = J r/2ucosu j sin (u-_2)- - sin q_
2 O W

u - _/4 u- 5

Near boresight u _ 0

- 2i u cos 2U

ED - -'u2- 2/4
sin

and the null depth can be seen to be

2
ND = Null depth =-_ sin ¢_

but sin ¢ = Q

2
ND = 20 log _ (db)

( o in radians) (4-1)
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The output of the amplitude sensitive phase detector is given by

E ° : _/IEsI I ED[ cos (QS - aD + aK) (4-2)

where

a = sum phase vs angleS

a D = error phase vs angle

= post comparator phase errorK

As can be seen from Eq (4-2), if E D goes to zero at boresight the post comparator

phase shift a K could have no effect. However, where a precomparator phase

error has caused null filling, and E D is not zero on boresight, the indicated

boresight will be at the angle where cos (a S - reD + _K) changes sign. Again

if aK is zero, a null filling does not effect the boresight angle, however if

o_K > 0, the phase reversal will occur at some angle other than at u = 0.

Figure 31 illustrates the effect of a phase error on the phase characteristic.
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The expressions for a S and a D may be easily derived from the individual patterns

with the pre-comparator phase shift term included. The resultant expressions

ar e:

7r
a s = - tan-_(u +_)

= _ tan-1 sin_b rr
a D _ (u + 7)

To determine the mag-nitude of boresight shift, it is necessary to determine the

slope of a S -a D at u = 0, or more simply the slope of a D (as a S is essentially

constant).

u=O

rr sin _b
4 2

u
=

,_'sin _ si2 _b)21+(_+--

4

- 7rsin

The boresight shift may be expressed in terms of a K as (see Figure 31)

daD aK 4

77"sin _b

r'a K sin q_

but

_A
u - h sin 0

7rA
du - cos 0 d 0

.\

ka K sin _b

dCb = _rAcos0

but atu= 0, 0=0, and cos 0 =1

d0 =
ha K sin

_'A
radians

and sin qb = qb

haKCb

AO = 57.3 7rA degrees (4-3)

= free space wavelength (inches)

a K = post comparator phase shift (degrees)
(due to phase lock loop)
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q5 = pre-eomparator phase shift (degrees)

A = antenna aperture (inches)

For the Apollo System, the ground antennas have a specification of difference

pattern null depths greater than 35 db. If a worst ease null filling of 30 dB is

assumed, the corresponding preeomparator phase error is approximately 3

degrees. (from Eq (4-1)). In section 4.1.2, it was found that the largest error

existing in the phase locked loop during earth orbit was less than 2 degrees.

From Equation (4-3), it can be found that the effect of these errors on bore-

sight is an error of only 4.75 x 10 -4 degrees, or less than 0. 001 mr for the

30 foot antennas at 2300 me. Even if the phase locked loop phase error

approaches 30 degrees, the resulting boresight shift is only about 0.01 mr

which is negligible.

Another effect is also caused by the phase error. The output of the phase sensitive

detector as given by equation (4-2), may be seen to be proportional to eos(c_ S -

a D +aK). Whenot K= 0, the cosine term will equal± 1 when (a S-o_K)=0or

180 °. However, for o,K ¢ 0, it can be seen that the cosine term will be smaller

than ± 1, and the sensitivity of the detector will be reduced which results in the

error curve slope being decreased. This desensitization will reduce the signal/

noise ratio of the receiver. A curve of desensitization vs phase error "aK" is

plotted in Figure 32. For small phase errors it may be seen that this effect is

also negligible; a phase error as large as 20 degrees causing only 0.54 db

desensitization.

4.1.4 Range Rate Errors

The roll of the spacecraft about its axis produces a range rate (or velocity) error

component in the down-link signal. Since the spacecraft roils at a maximum rate

of 0.5 degrees/see, the angle between the major axes of the two polarization

ellipses (spacecraft antenna and ground antenna) will change at the same rate,

resulting in a frequency error of 0. 00139 cps. This corresponds to a velocity

error of 9.1 x 10 -5 meters/see. Table 3 indicates the relationship of this

error to the RMS velocity errors during the mission. The RMS velocity errors

are predicted RMS errors in the state vector (a vector composed of the components

of the position and velocity vectors) resulting from random errors in measure-

ment, bias errors in measurement, and errors in tracking station location 8. The

minimum value during each phase of the mission is listed in the table. Velocity

errors due to spacecraft roll are seen to be greatest during earth orbit; however,

the contribution to RMS velocity error is insignificant.
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TABLE 3. PREDICTED RMS VELOCITY ERROR AND SPACECRAFT
ROLL ERROR CONTRIBUTION

Mission Phase

Earth Orbit

Translunar

Lunar Orbit

Transearth Phase

(first 20 hours)

Transearth Phase

(first 60 hours)

Beginning Re-Entry

Minimum

RMS Velocity
Error

(CM/sec)

±4

±10

± 24

±10

±5

± 100

Spacecraft Roll
Error Contribution

(percent)

0.23

0. 091

0. 038

0. 091

0.18

0.0091

4.2 EFFECT OF POLARIZATION PARAMETERS ON RANGING

The basic method for determining range in the Apollo mission is by use of the

pseudo-random code ranging system. This system operates by phase modulation

of the transmitted RF carrier with a periodic binary waveform which has the

property that the value of the auto correlation function is maximum when compared

with a binary waveform of the same phase, and is uniformly low when out of phase.

The modulated signal propagates to the spacecraft and is transponded back to

earth. The received code is then correlated with a locally generated code, and

the time delay between the two codes is a measure of the propagation time to the

spacecraft and back; and therefore, is a measure of range.

A phase lock loop is used in the code correlation circuit so that the phase of the

received code with respect to the locally generated code can be accurately deter-

mined. Hence, phase error in the phase lock loop contributes to range inaccura-

cies. Any phase shift of the R-F carrier during propagation between spacecraft

and ground (i.e., Faraday Rotation) will also result in range inaccuracies since

the ranging code is phase coherent with the R-F carrier. In order to determine

the magnitude of these range inaccuracies, one must analyze the performance of

the spacecraft phase lock loop as well as that of the ground station.

4.2.1 Spacecraft Phase Errors

For the purposes of this study, the spacecraft is assumed to have a phase lock

loop identical to that of the ground station. (See section 4.1. ) Static phase

error and phase jitter may then be calculated for the spacecraft transponder

in the same manner as the ground station, and velocity error (0v) is again zero.
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Figure33depictsstatic phaseerror versus rangefor thespacecrafttransponder
duringearthorbit. Thephaseerror is seento beonlyhalf themagnitudeas that
at thegroundstationsincethedopplerfrequencyrate at thespacecraftis half
that at thegroundstation.

Figure34depictsphasejitter versusrangefor thespacecrafttransponder
duringearthorbit. Thecurvesarebasedupona 1KWgroundtransmitter and
30foot transmittingantenna,anequivalentnoisetemperatureof 290degrees
Kelvin, and7 dBcircuit losses. A loopbandwidthof 2 KCis againused. The
dashedcurve includesmaximumpolarizationlossof 3.54dBandatmospheric
lossof 2dB.

Figure 35depictsthetotal phaseerror in thespacecrafttransponder,obtained
by additionof static phaseerror andphasejitter. Thecross-hatchedarea
indicatesthevariationof phaseerror dueto spacecraftroll. Figure 35is com-
binedwith Figure29to obtainthetotal phaseerror in thecommunicationlink
duringearthorbit. (Figure 36) Themaximumphaseerror (1.62degreesis
seento occurat minimumrangewitha maximumpossiblevariationdueto
spacecraftroll (0.17degrees)occurringat maximumrange.

4.2.2 Ranging Errors

Since the ranging code is phase coherent with the carrier frequency, any carrier

phase shift will appear as a range error to the ground receiver. As a result,

the two way phase lock loop phase error of 1.62 degrees contributes to range

inaccuracy. In addition, a two way Faraday rotation of 4 degrees maximum

(see Appendix II) during a 185 KM earth orbit results in a total phase shift of

5.62 degrees to the R-F carrier. The time required by the R-F carrier to

change phase by 5.62 degrees is 6.8 x 10 -12 sec and the propagation distance

of the carrier in this time interval is 0.10 cm. Since the RMS error in position

is +40 meters during earth orbit, 0.10 cm represents an insignificant contribution

to range inaccuracy.

Referring again to Appendix II, the Faraday rotation can reach a maximum of

44 degrees during the mission at spacecraft altitudes exceeding 700 KM. This

represents a range error of 0. 820 cm.

It can be concluded from the foregoing that signal polarization variations in the

Apollo communication link have an insignificant effect upon the ranging receiver

and accuracy with which spacecraft range can be determined.
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Section Five

5. CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

From the preceding discussion, it appears that the principal factors resulting in

system performance degradation are:

1. Off axis eUipticity resulting in polarization mismatch loss at secondary ground

stations.

2. Multipath propagation which causes increased noise temperature and boresight

errors at low angles, resulting in loss of tracks and communication.

3. Plasma sheath formation during spacecraft reentry resulting in communication

blackout during a criticalphase of the mission.

A detailed discussion of the firsttwo factors has been covered in this report.

Methods of reducing or eliminating the problem of polarization mismatch loss are

considered in section 5.2. The problems arising from multipath_atlon re-

quire further stud_y,preferably an experimental investigation to determine the

magnitude of the boresight errors and noise temperature increase over various

types of terrain. Specific recommendations for the type of study required are

also considered.

The problem of the plasma sheath, while constitutinga major signal transfer

problem has not been treated extensively in this study, due to the amount of

effortbeing expended by many others to solve this problem.

Additional factors considered in this study were:

a) Effect of Faraday rotation on wave polarization and signal transfer.

b) Effect of spacecraft motion on signal transfer.

c) Evaluation of the magnitude ofphase errors in the phase locked loops during

various portions of the mission and the effectof these errors on signal pro-

cessing including angle track and range information.
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d) Degradation of Doppler information as a function of spacecraft position and the

resulting errors in range rate.

The resulting calculations, based upon assumptions which are believed to be

reasonable, indicate that the magnitude of these effects are in the most part

negligible as applied to the Apollo communications link.

5.2. CONSIDERATIONS FOR IMPROVED SYSTEM PERFORMANCE

5.2.1. Polarization Matching

To reduce the signal loss caused by the off axis ellipticity of the spacecraft

antenna, and any depolarization caused by the transmission path (i. e. Faraday

rotation, multipath, etc. ), it would be possible to have the ground antenna

sense and match the incoming wave from the spacecraft.

Continous polarization match with an incoming signal may be accomplished in

several ways. To be able to match an incoming arbitrarily polarized wave, it

is necessary to know the magnitude of the ellipticity and the tilt angle of the major

axis with respect to the antenna axes. Two ways of obtaining this data are as

follows:

(a.) By measuring the received signal with two orthogonal circularly polarized

antennas, the magnitude of the left circular and right circular components

of the field may be determined. The axial ratio may de determined by taking

the ratio

AR -

AR =

R =

L =

(b.)

R+L
R-L

axial ratio

magnitude of right circular component

magnitude of left circular component

A further measurement is necessary to determine the tilt angle of the ellipse.

This may be done by either measurement of the maximum field with a rotat-

able linearly polarized antenna or changing the phase of one of the circularly

polarized antennas and adding both the right and left circular components.

When the output is minimum, the tilt angle may be determined by the phase
1

setting (with respect to a phase reference).

A second method 1 would be to measure the vertical and horizontal components

of the incoming waves and the phase between these components. From a know-

ledge of these three characteristics, the axial ratio and tilt angle may be

determined.
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Oncethe characteristics of the incoming field are known, it is necessary to have

some scheme for matching the ground antenna polarization characteristics to those

of the incoming wave. One possible technique of polarization matching is shown

in Figure 37. This method consists of a rotating half wave plate which effectively

rotates the plane of a linearly polarized wave, and a rotatable quarter wave plate

which forms the elliptically polarized wave.
62145-107
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Figure 37 Polarization Control Circuitry

By rotating the quarter wave plate with respect to the half wave plate, any elliptical

polarization from linear to left or right circular may be generated.

Then the quarter wave plate may be locked to the half wave plate and the combin-

ation of the quarter and half wave plates rotated with respect to the linear polarized

feed signal. This will rotate the polarization ellipse axis.

5.2.1.1 Implementation

Implementation of these functions of sensing and control into a tracking system

may be done in a manner as shown below.

a. Linear Polarization Sensing -- A pair of orthogonal linearly polarized sensing

elements are mounted separately from the antenna feed. (See Figure 38. ) The

amplitude of each linear signal and the relative phase between the two signals are

f_.d into a computer which calculates the incoming signal axial ratio and tilt angle

of the polarization ellipse. Commands are then generated which are sent to the

antenna feed system which will rotate the quarter wave plates (k/4) and half wave

plates (k/2) in the antenna feed. For a monopulse system, four polarization con-

trol elements are normally required, as a typical monopulse circuit consists

basically of a four horn feed.
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This system has the disadvantage of requiring a computer to determine the

characteristics of the incoming wave.

b. Circular Polarization Sensing -- Implementation of the circular sensing

method is shown in Figure 39. Here the axial ratio is determined easily by the

ratio detector, however, the ellipse tilt angle must be determined by a minimum

on a detector. Automatically determining the tilt angle may again require a com-

puter, unless the detector were set to respond to a preset minimum level. However,
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for slowpolarizationvariation, a humanoperatorcouldread outthe axial ratio
andtilt angleandsetup thenecessarypolarizationcontrol settings.

62145- log

I

L
|

I

RATIO

DETECTOR

R÷L

AR =

R- L

SENSING

RIGHT CIRCULAR POLARIZED ELEMENT

LEFT CIRCULAR POLARIZED ELEMENT

I
PHASE

SHIFTER

PHASE READING

i

_INIMUM RESPONSE

I DETECTOR I TILT ANGLE FOR

PI TILT ANGLE

READOUT

FEED POLARIZATION

CONTROL

COMMAND SERVOS

l
TO ANTENNA FEED

11

I

Figure 39 Circular Component Sensing

Another way of utilizing the circular polarization sensing is shown in Figure 40.

This may be the most practical method of implementation. The incoming wave

axial ratio is determined as before from the circular polarization components.

The antenna feed axial ratio is then set to match that of the incoming wave. Then

the polarization ellipse is rotated by the tilt angle control servos until a null is

obtained on the orthogonal linear component of incoming signal at the input to the
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monopulse bridge. This ensures that maximum power is being received. This

method also has the advantage of a elosed loop feedbaek eontrol when aligning the

ellipse axis. This could further be refined by incorporating an additional feed-

back loop on the axial ratio eontrol servos after the tilt is aligned.
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5.2.1.2 CostConsideration

Thetechniqueconsideredabovemayrequire extensivemodificationof theexisting
equipment.As polarizationmatchingis principally only aproblemfor a secondary
groundstation(i. e. : The station on which the spacecraft is locked experiences no

off axis polarization loss} it may not be economically feasible.

If such a scheme is desirable, the method illustrated in Figure 40 would appear

to be the most feasible. Although it requires replacement of the ground antenna

feed systems, with the resulting development of the required hardware, it does

not require the facilities of a computer for polarization sensing.

However, it may be feasible to utilize one of the other schemes if a human operator

is used to match polarization for maximum signal response. This technique has

the advantage of requiring less hardware in that no closed loop servos are required.

5.2.2 Reducing Multipath

Reducing the effects of multipath propagation may be approached in two ways.

One would be to use polarization diversity to receive the returned signals and

attempt to perform a correlation technique to reduce the ambiguities arising

from each of the returned signals. Some scheme may be possible to take ad-

vantage of the fact that the reflection coefficients for vertical and horizontal

polarization are different in the near grazing angles encountered near horizon.

See Figure 41.

The most straightforward approach to reducing multipath effects would be to

utilize vertical polarization for tracking at angles less than approximately 12

degrees, and circular polarization for angles greater that 12 degrees. This

would take advantage of the lowest ground reflection coefficients in each region

as may be seen from Figure 41.

Another approach would be to eliminate or minimize the energy radiated into the

ground. 2_nis may be feasible for par_,cu.ar applications. _ .... _-_-_ _^ _-D,V bll_ i;1..tl-

tenna subreflector, and using low spillover feeds, it should be possible to re-

duce the sidelobes on one side of the antenna pattern. (See Figure 42. ) Techniques

for accomplishing this are at present under study at Hughes for application to

deep space tracking antennas which must track near the sun, an extremely noisy

source. It is possible to achieve such an effect by an antenna distribution shaped

to cancel specific sidelobes. Adaptation of this technique to steerable paraboloids

would be an area in which to concentrate further study efforts.
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Figure 42 Reducing Lower Sidelobes to Reduce Multipath Effects

5.3 RECOMMENDATIONS

Section 5.2 discusses some considerations for polarization match schemes. If

such an approach seems justified on a cost/performance judgement, the develop-

ment of hardware to accomplish accurate polarization sensing and tracking would

be required. Possibly further consideration could be given to methods of imple-

mentation of polarization matching, from the standpoint of detailed price and

performance comparisons.

The problem of multipath would appear complex enough to warrant a further

experimental study to measure the magnitude of the boresight errors and noise

contribution over various types of terrain. Actual measurement with a tracking

system to determine the systems data processing response at low angles would

be informative. Study of specific techniques such as antenna beam shaping, low

spillover feeds, etc., may be warranted to determine to what extent tracking and

communications can be improved over existing systems. Measurements on exist-

ing Apollo stations should be available in such a study.

As mentioned in Section 5.2.2, the most economical method of reducing multi-

path would be the use of vertical polarization for tracking the spacecraft at angles

'NK_I .... 1 /lb .1 ..... 4-^ 4.n1.^ no,l_.n_'dl-n,r_^ ,"L'I_ 4"h,a_ lr_lv._.'._ n"P/_11'l"l/_ "Pd_"ld_/'_"_/_n_l /'btgd_F"_/_'i_lll"_"

Above 12 degrees, circular polarization will yield the best performance with

respect to multipath reflections.
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Appendix I

GRAPHS OF POWER LOSS BETWEEN TWO ARBITRARILY POLARIZED

ANTENNAS VERSUS AXIAL RATIO
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Appendix H

ONE WAY FARADAY ROTATION VERSUS SPACECRAFT HEIGHT
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Appendix HI

THEORETICAL PATTERNS OF A THIRTY FOOT ANTENNA ABOVE A GOOD

EARTH (c= 0.012, c r = 15)
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Appendix IV

PHASE LOCK LOOP ANALYSIS

1.0 INTRODUCTION

A typical second order phase locked loop circuit is shown in Figure IV-1. The

object of the phase locked loop is to voltage control the VCO so that its output will

track coherently the phase of the input signal E s. The input signal is represented

_/2E s sin (Wst + 01) and is fed into one input arm of the firstas mixer. The

from the VCO is represented as q_-E o cos (Wst - ¢01t + 02) and is fedoutput

into the other input arm of the first mixer. The output of the first mixer is

simply the product of the inputs and is K m E ° E s sin (wlt + 01 - 02) where w 1 is

the angular frequency of the first i.f. and K is a constant associated with them

first mixer. Only the low frequency component has been retained since the cir-

cuit is designed to respond only to these frequencies. Double mixing system is

shown here, since in general the incoming signal contains subcarriers which are

coupled off after the first mixer.

The output of the first mixer is fed into a second mixer to generate a second i.f.

frequency. Although a reference oscillator is shown here, the reference signal

for this second mixer can be derived from the VCO output. The output of the

second mixer is K'_,E_,Eo sin (w2t + 01 - 09)_ where K'm is a constant associated

with the first and second mixers and w 2 is the angular frequency of the second i.f.

The output of the second mixer is fed through a bandpass limiter and onto the

phase detector. Again the reference signal for the phase detector can be derived

from the output of the VCO. The bandpass limiter contains a suppression factor

a which varies with the magnitude of the input signal level (see Reference 1).

The bandpass limiter provides narrow loop bandwidths at low signal levels and

wider bandwidths at high signal levels. The signal suppression factor, a, is

given approximately by,

1
ot : (i)

1 + _. (_)
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KmEoE s sln(Wlt + 0 1 - 02) K 'mEoE$ sln(W2t + 01 - 02 )

(Wl - W2) 1 oscREF

LIMITER l = DETECTOR

K'mEoEs sln(W2t + 01- 0 2 ) 1

J
W2

2E ° cos(Wst - Wlt + 0 2)

K pp
m EoEs

Figure IV-lo Typical Phase-Locked Loop
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_E s sln(Wst +01)

t/2Eocos(Wst -- wlt + 02)

LOW PASS t

FILTER

G(S)

SECOND MIXER
BAND PASS LIMITER
PHASE DETECTOR

_A

°CAKmEoEs( 0 I- 02 )

= =AKmEoEs0 e

Figure IV-2. The Linearized Phase-Locked Loop
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where

N = noisepowercontainedin the pre-detection i.f. bandwidth

S = input signal power level

4 S
In the above equation the approximation occurs because the factor _ varies with _.

4 S
This factor varies from _ to 1/2 as the _ varies from 0 to co (see Reference 2).

The output of the phase detector which modifies the constant K' to K" is trans-m m

mitted through a low pass filter. The output of the low pass filter is applied to

the VCO which is the component to be controlled.

2.0 ANALYSIS OF THE CIRCUIT

Figure IV-2 shows a simplification of the circuit shown in Figure IV-1. Several

of the components have been combined and sin (01 - 02) has been set equal to

01- 02 = 0 e. The open loop gainH(s) is,

K 1
H(s) = c_ AKmEoE s T G(s)

where G(s) is the transfer function which determines the order of the loop and

for the second order loop it is a low pass filter. K1/s is the transfer function of

the VCO.

Letting K = AKmEoEsK 1

H(s) = c_K G(s)__g_ (2)

The low pass filter in most cases is either an active network or a passive network.

An active circuit is shown in Figure IV-3 and a passive network is shown in Fig-

ure IV-4.

For the active network G(s) is given by,

1 + R 2 Cs

G(s) = 1 + pR 1 Cs

with R 1 C set equal to I and lettingR 2 C = r,

G(s) - 1 + T s (3)
!+s

For the passive network of Figure 4,

1 + R 2 Cs
G(s) -

1 + R 1 Cs
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0

RI

_" J

C R2

R1 > > R2

O

Figure IV-3. Active Low Pass Filter
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0

R1

R2

C

O O

RI > > R2

Figure IV-4. Passive Low Pass Filter
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AgainwithR1Cset equalto 1andletting R2C = v,

l+_s
G(s) - 1 + s (4)

Hence, the active network reduces to the passive network when p = 1.

Now, substitute (3) into Equation (2) to obtain

H(s) = aK
1 +T S

(_+ S) S

(5)

IfRIC _= 1, then,

c_K

H(s) - R1 C

l+rs

1 + s)(g R 1 C

(6)

Substituting Equation (5) into the transfer error function;

°e(S) I

01(s) 1 + H(s)'

one obtains:

Oe(S)

ol(s)

1
For_ << raK,

Oe(S)

01(s)

2 s
s + -

1
s2 + ( "raK+ _)s + _K

s (s + i)

s 2 + (raK)s + otK
(7)

Even when g = 1 (passive network) and for loop noise bandwidths greater than

50 eps, 1 << vc_K. When the loop noise bandwidths approach 20 cps, raK is an

widths is a fairly good approximation.

By using Equation (7) one wishes to obtain the time response when 01(t) is equal

to a frequency step and when 01(t)is equal to a frequency ramp, since these are

the principal driving functions for phase-locked loops employed for tracking

satellitesand space vehicles. Derivations are given in the following two sections

for these inputs.

3.0 FREQUENCY STEP INPUTS

For Ol(t ) = (Aw)t, Ol(S ) - 2
s
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Substituting into Equation (7),

0e(S ) =
s(s 2 + raKs + aK)

(s)

Using the inverse transform given on page 342, No. 1.305, of Reference 3, one

obtains

0e(t) _ 1 + 1(__ raK>2 + 211/2 -_t2 _ sin (Bt + _)
e

(9)

where

I1 -r2 O_K 182 = aK 4

and

¢ = tan-1 fl - tan-1 fl
1 TaK _ Ta__.__KK

2 2

Equation (9) applies to the under damped case where

For the critically damped case where T _/_K = 2:

_ 1 + e- _r-_ t (

0e(t) _ g_/_K

For the overdamped case, where _- _--K >2,

r _-K < 2.

_]'a--Kt 1

0e(t) _ 1 [(_
+

g_f ot K

,r2K)2 - fl,2] 1/2 e---

raK

(I0)

t

sinh (fl' t-g)

where

8' = _(T2--'_K)2 - aK

and

__,
_b = tanh -I 1 TOl K

g 2

tanh- 1 /3,
yOLK

2

(11)
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4.0 FREQUENCY RAMP INPUT

wt 2 _0
For 01(t ) - 2 ' 01(s) - 3

S

Substituting into Equation (7):

Oe(S) -

1
&(s +if)

2 s 2s ( +rc_Ks +ceK)
(12)

Using theinverse transform given on page 347, No. 2.245 of Reference 3, one

obtains,

9¢,t,tl _K t _K -xt
-- + l---e sin(yt +_)

w _ y
(13)

where

ToLK
X --

2

y = i/2 _/4_K- (T_K) 2

_= tan-1 Y
X

Equation (13) applies to the underdamped condition where r _'--_< 2.

For the critically damped case, where -r _ = 2,

Oe(t)_K _ t + 1-e-V/-ffKt (t _+ 1) (14)

For the overdamped case when T_ff'-K > 2

Oe(t) cr K

& _ ..... ,y - ..... ,-,
11._i

where

T0_K
X --

2

y = 1/2 _/ (v_K) 2-4_K

5.0 RESULTS OF COMPUTATION FOR FREQUENCY STEP INPUT

Equations (9), (10), and (11) were programmed for the IBM 7094 computer and

the results are shown in Graphs IV-1 through IV-11. A brief description of what

is plotted on the graphs will first be given.
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All the graphs for the frequency step input shows

0e
Aw

as a function of q/_t for either varying v V/_ with ¢ and _ fixed or vary-

ing _ K with _ and x v/'-d K fixed. The quantity v _ is equal to twice the

damping ratio assigned conventionally to circuits employing feedback controls.

The quantity q/_ K is equal to the undamped natural frequency of the system.

Whenever p = _, it is not necessary to assign values to _ to obtain the

eruves, since it is obvious from Equations (9), (10), and (11) that values of

¢
AW

can be calculated without numerical values assigned to v/-dK. The value for

r q/-_--K depends on the loop bandwidth and the input signal strength. Hence,

knowing these values, -r _ K can be determined and the transient responses can

be observed by referring to the corresponding graph. The case when _t is very

large (_ = _ or 106}, the static phase error is zero and only the transient error

is of interest.

Graph IV-1 shows the transient responses for various values of T v/-d-Kwith

_t = co The error is zero at t = 0 and approaches zero as t approaches _. The

critically damped curve is obtained when r v//e K = 2. Below this value, the

peak transient error gets larger and above this value the peak transient value is

lower but the settling time is longer.

The next set of curves, Graphs IV-2 to IV-1I are responses for frequency step

input when the value of _ is finite. For these curves, numerical values must be

assigned to _ The values assigned (50 to 1000) are for the conditions where

the threshold loop noise bandwidth varies between 50 and 700 cps. To further

clarify the curves, a more detailed explanation will be given by referring to

Graph IV-2 and IV-3. Figure IV-2 gives the response for r _ = 2.0 and

= 1.0 (passive filter}. Only two curves are given, since the curves for other

values of q/-_-K, between 50 and 1000, lie within the curves shown. The curve

for v/-dK = 50 as t approaches _o, approaches

1
= .02.

The curve for v/_ = 1000 as t approaches _ , approaches 0.001. GraphIV-3

shows the response for r _ = 2.0 with _t = 106 (active filter). Only one curve

is shown since for values of _ = 50 to 1000 the transient response is very

nearly the same. As t approaches co , the curves approach 1/(p V/_ K ).
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6.0 RESULTS OF COMPUTATION FOR FREQUENCY RAMP INPUT

Equations (13), (14), and (15) were programmed for the IBM 7094 Computer and

the results are shown in Graphs IV-12 through IV-26. Before getting into a de-

tailed discussion of the various graphs, a brief explanation of what is plotted on

the figures will be given.

As in the case for the frequency step input, all graphs are plotted for the error

f-.mction, 0e_- K_]_' , - _ " f,,nction of x]=_--__t. Again when .u = _, it is not neces-

sary to assign values to _f_ K to obtain the curves presented. Unlike the re-

sponse for the frequency step input, after the initial transient there exists either a

fixed error (p = _) or a linearly increasing error function of t/_ (See Graph

IV-14).

Graphs IV-12 and IV-13 show the response for p = _ for v _ varied from

1.0 to 4.8. The critically damped curve is obtained when T V_ K = 2.0. All

the curves approach 0e_ K/& = 1.0 for t approaching _.

Graphs IV-14 to IV-26 give the responses for finite values of p. An explanation

of the curve will be given by referring to Graph IV-14 and IV-15. Similar dis-

cussions apply to the remaining curves. Graph IV-14 shows the response for

v _r_K = 1.0 and p = 1.0 with _/_K varied from 50 to 1000. After the initial

transient peak, all the curves increase linearly with V_K-'t. The rate of

increase isl/(_ vf_). Graph IV-15 represents the response for _" v/_ = 1.0

and _ = 106 with _r_ varied from 50 to 1000. There is only one curve shown

since for these values of _ the response is essentially the same.

As an example of the use of the graphs, suppose one wishes to find the time and

the amount of overshoot and when the steady state value equals the overshoot value

for _" vf_ = 1.0, _ = 1.0, and _ = 100. From Graph IV-14 the overshoot

value is 1.2 at _-Kt = 3.7 (t = 3.7/100 = 0.037 sec). For this value of the

..... ¢.... +_,,,, a = t:, x 1 _ x 1n-4 Frnrn th_ ._am_ Granh. the error function
e

again equals 1.2 at _/-_Kt = 20 (t = 0.2 sec).

7.0 USEFUL FORMULAS APPLICABLE TO PHASE LOCKED LOOPS

Loops

The loop bandwidth is given in Reference 1 as:

ozK_- 1+ _ (16}
BL - 4 4 _-
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Let a o be the threshold value of a when the noise power contained in the threshold

loop noise bandwidth is substituted for S in Equation (1). Replacing a by ao'

Equation (16), becomes:

K_-

_ o + 1 (17)
BLo 4 4--7

where BLo is defined as the threshold loop bandwidth.

At threshold, v'/ao K = ,(2. When this equality is substituted into (17), the

following expression can be derived:

K --

32 BLo 2

9 oL
o

(18)

The units are: BLo in (cps) 2 and K in (see) -2. When

is substituted into Equation (16), the following expression can be derived:

=B {2 )\T-Wo+

When Equation (18) is substituted into

oL K
o

one obtains,

3
T -

4 BLo

When BLo is in cps, _- is in seconds.

The static phase error for frequency ramp input is given by:

0 - radians
e aK

when w is in radians/sec 2 and a K is in (see) -2.

The static phase error for frequency step input is given by

0 - radians.
e _ K

(19)

(20)
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and the phase jitter is given by:

2 k TB Lcr = radians (22}e S

where

k = Boltzmann's constant, 1.38 × 10 -23 watts - sec
K o

T = Equivalent excess noise temperature of the antenna plus receiver, in

degrees K.

S = Signal power into receiver.
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